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Cylindrically symmetrc  filtration flows of a two-plane "gas-condensate" type mixture with phase transitions are considered. A 
sufficient test of absolate stability in the small in the case of steady flows is found subject to certain assumptions, the strongest 
of  which is that there :~ no mobility threshold for the liquid phase. It is shown, by numerical estimates, that this stability test is 
satisfied in the ease of real filtration flows. © 1997 Elsevier Science Ltd. All rights reserved. 

It is well known that single-phase steady filtration flows are stable. In the theory of the filtration of multi- 
component mixtures with phase transitions, the stability of steady-state flows has not been fully 
investigated. On the basis of the results of a numerical simulation, it has been reported [1, 2] that non- 
decaying oscillato:ry processes are observed in the case of the filtration of a gas--condensate mixture in 
the neighbourhood of an operational well. The opinion has arisen in this connection that instability 
accompanying filtration is possible and, moreover, that it is very common in practice. 

It is shown below that, in an extensive class of cases, the steady filtration flows of a gas-condensate 
mixture are absolutely stable in the small. The question of stability with respect to finite perturbations 
remains open. 

In Section 1 we investigate a number of general properties of flows of a multi-component, two-phase 
mixture with phase transitions. The dynamics of small perturbations against the background of the exact 
steady solutions described previously in [3-5] are considered in Section 2 and a sufficient condition for 
the absolute stability of these solutions is obtained. In Section 3, it is verified that, in typical cases, this 
criterion is satisfied with a large margin. 

1. Consider an (M + 1)-component mixture and suppose n i the corresponding molar densities of 
the components. Henceforth, the Latin subscripts i , j ,  k take values of 0 , . . . ,  M and the Greek subscripts 
and superscripts ct and ~ take values of 1 , . . . ,  M. Summation over repeated subscripts is assumed 
everywhere. We shall only study isothermal processes and, for brevity, the temperature dependence of 
all mechanical and thermodynamic quantities is therefore omitted. 

We know from ,;tatistical physics [6] that the free energy per unit volumef = f (n i )  is defined for the 
homogeneous states of a mixture and that this free energy is a smooth and single-valued function of 
the densities of th,z components n i. The thermodynamic relations 

d f  = xidn i, f = - p  + ×ini 

are satisfied, where ×i are the chemical potentials and p is the pressure. Duhem's equality 

(1.1) 

dp = n,d×, (1.2) 

follows from (1.1). 
Relation (1.1) enables us to calculate the chemical potentials and the pressure in the mixture from 

the known free energy. 
If the functionf = f (n i )  is convex, then the homogeneous states of the mixture are thermodynamically 

stable in bulk. This function is not convex in the case of a two-phase "gas-condensate" type mixture. 
In the latter case, the thermodynamic stability of a homogeneous state n i is checked by considering all 
possible virtual dMsions into phases nil , ni2 

n i = sni l  + (1 - s)ni2 (1.3-) 
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where s is the volume fraction of phase 1 (0 ~< s ~< 1). If the quantity 

f *  = s f ( n  n ) + (I - s ) f ( n i 2  ) (1.4) 

turns out to be less than f ( n i )  then the homogeneous state is thermodynamically unstable and the 
heterogeneous state (1.3), which ensures a minimum value of the quantity (1.4), is stable. 

In the case of two-phase states, we use n/~ and n~ to denote the molar densities in the liquid phase 
(condensate) and the gas phase respectively. We again define the free energy unit per volumef = f(ni) 
in the two-phase domain according to formula (1.4) which specifies the value of the free energy in the 
stable heterogeneous state. Hence, instead of the initial function f - f(ni)  , we shall consider its convex 
envelope, which is denoted by the same symbol. The new free energy is a doubly differentiable function. 
However, unlike the initial free energy, the second derivatives o f f ( n i )  can have discontinuities accom- 
panying a transition from a single-phase domain to a two-phase domain. 

It can be shown that, with the new definition of the free energy, the thermodynamic relations (1.1) 
and (1.2) are satisfied as before but, in the two-phase domain, f = f ( n i )  and p are now the chemical 
potentials and pressure in each of the phases. 

Since f = f ( n i )  is now a convex function, the symmetric matrix 

otij = ~ht i / i)nj = 32 f / 3ni~nj  

is non-negative definite. Using this matrix and relation (1.2), it is possible to calculate the derivative 
of the pressure with respect to the total density n = n o + . . .  +nu  for a fixed composition ci = ni /n 

(3p / On)ci = nctocic  j 

This quantity is always non-negative although it can undergo jumps on binodals. The previously 
discussed possibility of an alternation in the sign of the compressibility in the case of a gas-condensate 
mixture [1, 2] is therefore excluded. 

We will now assume that there is an unsteady, cylindrically symmetric, filtration flow in a homogeneous, 
isotropic reservoir with a porosity m and permeability k in the neighbourhood of an operating well. 
Let r be the distance up to the axis of the well. The local conservation laws for the components [7] 

3t ( m n i )  + r - lOt  ( rJ i )  = 0 (1.5) 

then hold. 
According to Darcy's law, the expressions 

Ji = - kK i~rP ,  Ki = fRni~la-~ I + f,'ntcta~ "l (1.6) 

hold for the fluxes Ji when capillary forces are neglected. 
The quantities ni, nig and n/c are related by the equation 

ni = snic + ( l - s )n i~  

where s is the saturation of the pore space with the liquid phase. In relations (1.6), ~ = ~(n. ), 
= l&(n/~) are the shear viscosities of the gas and the condensate respectively andfg = f g ( s ) , f c  = fc~s) 

are the phase permeabilities of the gas and the condensate. 
Since s, n~ and n/~ are thermodynamic functions of the densities ni, (1.5) is the complete system of 

equations for the unknown functions n i = ni(t ,  r).  
We shall now discuss the boundary conditions. Let rw be the radius of the well with respect to the 

drill bit and let r0 be the radius of the feed contour. We impose the following conditions on the pressure 

Plr--rw = Pw, Plr=p o = PO, Pw < PO (1.7) 

In the case of gas--condensate deposits, a situation is typical when the mixture in the reservoir is in 
the gas phase under the initial temperature and pressure conditions. When the reservoir pressure is 
reduced during the development of the deposit, the phenomenon of so-called retrograde condensation 
[8] occurs when the gas phase becomes thermodynamically unstable and a liquid condensate separates 
out. Under the conditions in the reservoir, the condensate occupies a small part of the pore space and, 
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because of the low values of the phase permeability, it may be considered to be hydrodynamically 
immobile. The cortdensate acquires mobility close to operating reservoirs where it can occupy a large 
part of the pore w)lume [3-5]. Let c/0 be the composition of the mobile (gas) phase of the reservoir 
mixture which enters into the feed contour of the well. I fpd  is the pressure at the start of the condensation 
for a mixture of this composition then, generally speaking, p0 I> Pd. In the case when a condensate has 
separated out in tile reservoir, the mobile phase is saturated and P0 = Pd. 

We now impose the additional boundary condition 

and introduce the new quantities 

nt¢= ~, ni&, 

ql~-0=c~ (1.8) 

n c = ~.,t~ic 

K = Z Ki = fgn~P-~ ! + fcncla~ I , C i = K i I K 

(the summation is carried out from i = 0 to i = M). 
In accordance with their definition, the quantities Ci can be interpreted as the concentrations of the 

components of a certain mixture which separates out under a pressure p into the same phases as the 
initial mixture. The corresponding total molar density N, partial densities Ni, and liquid phase fraction 
S are determined trom formulae 

N = K / (fsg~l + fci.tc i ), Ni = N C  i = (1 - S)nig + Snlc 

(1.9) 
S = f c g c '  I ( f~ll~ I + fcg~-' ) 

We now consider the inverse problem of determining the parameters of the initial mixture n i using 
the known values of Ci a n d p .  Knowing the free energy for the heterogeneous states f, it is possible to 
determine the quantities n~, n/c, S using the values of Ci a n d p .  In order to calculate n i from the known 
values of n~, n/~, it is necessary to find the value of s for which F-xl. (1.9) holds. The right-hand side of 
this equation depends monotonically on s. However, if there are mobility thresholds for the phases, 
this dependence will not be strictly monotonic. In order to ensure the unique solvability of Eq. (1.9) 
in the class of proc~sses being considered, when a gas phase is necessarily present, we shall assume that 
there is no mobility, threshold for the liquid phase. 

In connection with this assumption, we note that, if capillary forces are taken into account, when 
there is a threshold mobility in the case of the condensate, then the steady-state solution is non-unique 
[4, 5]. Consequently, in the latter case, any perturbation of the initial conditions which is confined to 
the class of exact steady-state solutions, does not decay and absolute stability cannot hold. 

We now introduce the new coordinate 11 = ln(r/rw) and rewrite problem (1.5), (1.7) and (1.8) in the 
form 

mot ( r2ni ) - kO n ( KCiOnP) = 0 (1.10) 

Pln=o=pw,  p l n = ¢ = p  a, Ciln=~=Cio (~=ln~-~ / (1.11) 

The third bound:uy condition of (1.11) is obtained from (1.8) while taking account of the inequality 
Po >~Pd" 

We recall the properties of the ~teady-state solutions [3-5]. From (1.10) and the third boundary 
condition, we obtain 

C i = Cio, K'dnp = q = Q / (2r,.kh) (1.12) 

The constant of :integration Q is the production rate of the well, and h is the productive height of 
the reservoir. 

In accordance with (1.12), the pressure is determined from the ordinary differential equation p = 
p('q + a,  q, Cio). The free parameters ¢t and q are determined from the first two boundary conditions 
of (1.11). 
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Thus, if the first two boundary conditions of (1.11) are not used, it is possible to obtain the steady- 
state solution for the densities in the functional form 

ni=ni(~+ot ,  q, Cjo) 

Quantities calculated for the steady .sglution will subsequently be denoted by an asterisk. We now 
determine the set of vector fields d, = e~(rl), wherej  is the number of the field and i is the number of 
the component, from the formulae 

~n i e ° ('q) = "~"~ ni ('q + ot, Q, c jo )la=o = l ' - ~  ) * 

e~X(l~) = ( ~n/ / 
j .  to s) 

(1.13) 

a /) 
mi (ll) = ~-~ao ni('q,q, cjo) 

In carrying out the differentiation with respect to the concentrations in formulae (1.13), account is 
taken of the fact that there is a dependence only on M of the quantities Ca and ca0 by virtue of the 
normalization equali.ties Y-,Ci = Xci0 = 1. 

The vector fields d~(rl) obviously define a basis in an (M + 1)-dimensional space for each value of ri. 
Any other vector field can be decomposed using this basis. Let ~ni = ~-)ni(t, "q) be small perturbations 
of the steady solution. We carry out an expansion in the basis 

~n i ( t. 11) = e/('q)xj (t, rl) 

and substitute it into the dynamical equation in the perturbations which follows from (1.10) 

m/)t(r25ni ) - karl (SKCi3nP + KSCi~nP + KCi/)nSP) = 0 

We obtain a system o fM + 1 linear equations in the M + 1 unknown functionsxi(t, 11) which describe 
the dynamics of the perturbations 

m(kq) -I r2GJa3tx j - 3nxa = 0 
(1.14) 

m(kq)-I r2pS/)txJ -/)n (VaXa) - 32Xo = 0 

where the following notation has been used 

M 
p i = y .  el , v c t=( / ) lnK/ / )c  a)p., Ga j = e ~ - c a 0 p  j 

i=1 

The boundary conditions on the functions xj(t, ri) are obtained from (1.1) and have the form 

x01n= 0 = 0, x01n=; = 0. Xctl~=; = 0 (1.15) 

If some particular boundary conditions are specified for the functions xi(t, rl) then problem (1.14), 
(1.15) becomes a closed problem and this enables us to determine the evolution of the perturbations 
of the steady solution with time. However, in order to investigate the stability in the small, it is not 
necessary to solve this problem in general form. Separation of the variables in problem (1.14), (1.15) 
is possible by virtue of the fact that the coefficients in the equations are independent of time. It is 
sufficient to investigate this particular class of solutions and to elucidate whether there are solutions 
which do not decay with time. If there are no such solutions the steady filtration flow is stable in the 
small. This problem is considered in the next section. 

2. To analyse the stability we need to use linear mappings in the various functional spaces and we 
shall now introduce the required definitions and notation. 
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The scalar product (., .) and the norm I" It in the complex space C t, where I ~> 1, are defined in the 
usual way 

I 
(u ,u ) !  = ~, 6-aUa, l u l t = ( u , u ) ~  ' u,u e C  t 

a=l 

We recall the expressions for the norms and scalar products in the corresponding spaces of the 
functions in the range [0, 4] with values in C t 

the space L ~  [0, 4] 

( ~ ' ¥ ) L . I  = 1 ((P(~)' ~/('l~))ldl~ 
0 

the space Hl,ct[0, 4] 

(q~, ¥ ) u . I  = (~,  ¥)t . , i  + ~2(~,l~0,~n¥)t.i 

the space L ~  [0, 4] 

11911u.t = (qhg)/~t, qh¥ e Hi.d[0,4] 

Ilqfll.,t =esssuplq~(rl)l t,  q ~  Lc,[0, ~] 

The norms of the continuous linear mappings, which will be considered later, are induced in the usual 
way by the norms of the linear spaces in which they act. 

In the case of a linear operator B in a space C t, we shall denote the corresponding adjoint operator 
by the symbol B ÷. We recall the useful equality 

I BIt -< (Tr( BB+ ))~ (2.1) 

In accordance with what has been said in Section 1, we carry out a separation of the variables in 
problem (1.14), (1.15) 

Xo(t, TI) = e i ~ z ( n )  , x a ( t , n )  = ei°Xya(~]) 

Substituting these expressions into relations (1.14) and (1.15) we obtain a system of ordinary 
differential equations with the following boundary conditions 

iox4y + itou jz - Ony = O, ( io3h I + h2 )y + icoflz - O2nz = O (2.2) 

yln=; = 0, zln= 0 = 0, zl,l=; = 0 (2.3) 

Here,~, is a column vector with components Ya, A is an M x M matrix with components A ~  = 
m ( k q ) q r ' G ~  vl is a column vector with components via = m(kq)qr2G°a, hi is a row vector with 
components hla = (m(kq) q r2p a -  vl~A~, h2 is a row vector with components hax = (--~nv a) and fl = 
(m(kq) -1 r2p 0 _ v13vl13). . . 

We shall consider a partial problem in the vector function Y01) (the first equation of (2.2) and the 
first boundary condition of (2.3)) together with the complete problem (2.2), (2.3). This partial problem 
is referred to as problem A. 

In addition to the assumptions which have been described in Section 1, we shall adopt the following 
number of additional assertions 

(u, A u ) M > ~ ( u , u )  M, 2L>0, u ~ C  M (2.4) 

A = A ÷, A > 0 (2.5) 
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We shall now discuss the physical meaning of these conditions. Under the assumption that the total 
density n depends only slightly on the concentrations Ca at a fixed pressure p, condition (2.4) means 
that an increase in a certain concentration Ca (or a linear combination of concentrations ~PCa) leads 
to an increase in the corresponding concentration ca (or the corresponding linear combination of 
concentrations ~Ca) .  The matrix equality in (2.5) can be interpreted such that the effect of a change 
in the concentration Ca on the concentration cl~ is the same as the effect of a change in the concentration 
CI~ on the concentration ca. When the small quantity vl~vll~ is neglected, the inequality in (2.5) reduces 
to the assertion that n. = n.(rl) is a monotonically increasing function. Let us put f0 = minf1(11). In 
accordance with (2.5),f0 > 0. 

We shall now seek a solution of problem (2.2), (2.3) when Im to ~< 0, which corresponds to non- 
decaying perturbations. We will initially concentrate on problem A and determine the matrix-valued 
function U = U(rl, 4) as the solution of the following Cauchy problem 

OnUO], ~) = ioaA(rl)U(rl,~), U(~,~)= I (2.6) 

Lemma 1. The inequality 

I U(~, ~)1 t < exp(Im o~.(~ - I])) 

holds when ~ ~< ~. 

Proof. Consider the function 

F(n) = TrtU(rL~)U(rI,~) ÷ ) 

Using equality (2.6) as well as (2.4) and the equality from (2.5), we obtain 

OnF = -21moTr(AUU* ) > -2 Im to~.F 

whereupon we derive the inequality F(rl) ~< exp(2Im a . ~ -  rl)) from the well-known Gronwall inequality 
[I11. 

On applying inequality (2.1), we obtain the statement of the lemma. 

Lemma 2. Let h0 = h0(rl) be a row vector which is a fixed element of the space L~u [0, 4] and let 
v0 = v0(rl) be a column vector which is an arbitrary element of the space Ht,cu [0, 4]. We now consider 
a linear mapping from the space HLcu [0, 4] into the space L2c[0, 4] 

(Luo)O D = ~ ko(q)U(rl,~)Vo(~)d~ 
rl 

This mapping is continuous and its norm satisfies the inequalities 

IILII_< 0~, II LII< 021¢ol -l 

Oj 2-~llh011~U~, 02 (2+2 ~ = = +3- 2)llholl..u F0 

F 0=llA-lll .M2+~ll0nm -III .M2 

(2.7) 

(2.8) 

Proof. The operator L is an integral operator and it is therefore continuous as an operator from the space 
L2u[ 0, 4] into the space L2[0, ~] [9]. The corresponding norm is easily estimated using Lemma 1 and the fact that 
the norm of an integral operator has an upper limit set by the norm of the kernel in L 2 [9]. By carrying out 
calculations, we show that the estimate is identical to the number on the right-hand side of the first inequality of 
(2.8). Next, since the space HLcM[O, 4] is imbedded into the space L2M [0, ~] and the norm of the inclusion operator 
does not exceed unity, we finally obtain the first inequality of (2.8). 

By considering problem (2.6), it can be shown that 

whence we obtain the equality 

u(~.~) -* = u(~,n) 
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~U(q,~)  = -ioU(q,~)A(~) 

This enables us to transform expression (2.7) using the formula for integration by parts: 

(Luo)(q)=ho(~)U(TI,~)(-io)A(~))-Iuo(~)+ho(I])(iO~A(~))-Iuo(TI)+ 

765 

+ I ho(n)U(q,~)~ ( (icnA(~))-]Uo (~))d~ 
11 

We will now estimate the norm of each term in L2[0, ~]. Here we shall take account of the fact that Hl,c~[0, ~] 
is imbedded in the :~pace of continuous vector functions [10, 12] and, moreover, that the norm of the inclusion 
operator does not exceed the number ~-lrz(1 + 3-1t2). Additionally, we again make use of the estimate for the norm 
of an integral operator and the result of I.emma 1. The second inequality of (2.8) is then obtained. 

The inequality 

II LII_< 2(0~ j + 0~tlol) -I (2.9) 

follows from inequalities (2.8). 
The solution of problem A is found using the formula 

y ( q )  = ito~ U ( r l , ~ ) u t ( ~ ) z ( ~ ) d  ~ 
T1 

Using the condition (2.2) we arrive at the following integro-differentiai equation 

ito( itol~ + 1., 2 )z + iof lz  - O2 z = 0 (2.10) 

(Laz)(rl)= I h a ( n ) U ( ~ , ~ ) u ~ ( ~ ) z ( ~ ) d  ~, a =  1,2 
q 

Let A be the usual self-adjoint extension of the Laplace operator a,~ into the space L2[0, 4], which is 
defined by the second and third boundary conditions of (2.3) [9, 12] and let x = (-A) -x/2. It is obvious 
that x is a continuous linear mapping from/_~[0, 4] into Hlc[0, 4] and, moreover, that II x II ~< 4(1 + re-z) It2. 
The quantity x may also be considered as an operator in L2c[0, ~]. Then, II x II ~< ~-1. 

We make the substitution z = x Z  in Eq. (2.10) and we then have a linear equation for Z in the space 

L O, El. 
Z + TZ  = 0 (2.11) 

T = T((~) = iOOVo(iCoV ] + V 2 ) 

Vo=(l+io/cflz) -I, Vi='l:~'c. V 2 = X ~  

Theorem.  T h e  lirtear operator T is continuous in the space L~[0, 4]. Its norm has an upper limit of 

/ ' t ° l  + I ; 
D = D ( t o ) = l t o l l  l+it~27t-2fol-t2 011+0211tO I 012+b221~1 

I 
01-u I = 2 I/2 42/Z -I (1 + 7t-2)1/211ha II..M 1" I 

0~1 = .2(2+2 ~ +3-~)4:n-~(1 + n-2)~llhall**.u FIF0 

,a= 1,2 

F t =Iluj l I®,M +~llo~nv j II.,M 

The function D(to)  is bounded in the lower complex half plane. Let Do be its maximum value. If 
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Do < 1, then Eq. (2.11) only has a zero solution and, consequently,  the steady filtration flow is 
stable. 

Proof. According to what  has been  said above, all of  the opera tors  Va are cont inuous in the space 
L2[0, ~]. An  estimate for  the n o r m  of  the opera tor  T is obta ined as the result o f  the application o f  
inequality (2.9) and the est imates for  the norm of  the opera tor  x. If  D O < 1, then the opera tor  T is a 
contract ive opera to r  and Eq. (2.11) only has a zeroth solution. 

So, a sufficient condition for stability has been found: Do < 1. However,  it is not  a necessary condition. 
If  this inequality is violated, it may  nevertheless turn out  that Eq. (2.11) does not have non-zero solutions. 
In the case when Do ~ 1, the assertions of  the theorem can be used to prove stability in a certain range 
o f  f requencies  which is often sufficient in practice. 

3. The stability test which has been found can only be useful in the case when the magnitude of Do actually turns 
out to be sufficiently small for actual filtration flows. 

We shall now estimate the order of magnitude of D0 under the typical working conditions of an operational well 
in a gas--condensate deposit. We shall confine ourselves to the case of a developed two-phase flow when P0 = Pa 
and the condensate occupies a significant part of the pore volume. We shall derive all estimates in the SI system 
of units. 

First, we fix the geometrical parameters of the problem: rw = 0.1 m, r0 = 30 m, ~ ~ 5. Next, we specify the filtration 
capacity characteristics m ~- 0.1, k ~ l i f  ts m 2 and the pressure conditions: reservoir pressurep0 ~ 5 x 10 7 Pa and 
the pressure drop 6p = (P0 -Pw) ~ 5 x 106 Pa. 

The quantities ng and nc may be of the same order of magnitude but differ several-fold: 

ng= n c = An = 10 4 molm -3, An = n g -  nc (3.1) 

The typical orders of magnitude of the viscosities are as follows: 

= 10 -s Pa s, t~ = 104 Pa s (3.2) 

It can be seen from (3.1) and (3.2) that the quantity K can take values of the order of 108 mole (J s -1) or 109 
mole (J s-l). We use the lower value as the estimate and then find the quantity 

q = k~-lAp --- 1014 m o l  m -3 s -1 (3.3) 

We now consider the quantity Onn.. The total density n. changes considerably on account of the pronounced 
differences in the distribution of the phases: close to the well the pore space is mainly filled with the liquid phase 1 
while, away from the well, it is mainly filled with the gas phase. It is therefore possible to put 3nn. = 4- An (see 
(3.1)). Now, when account is taken of (3.3), it is easy to estimate the magnitude of/t and, consequently, the magnitude 
offo 

f0 ---fl --- n(kq)=lr2~ =1An =" 2 x 10 5 s (3.4) 

We shall neglect the quantities pC( as well as the derivatives OnA, OnVl, 0nv a. 
We now consider the matrix A. It is actually calculated using the matrix (3c a / OCl~)p. Calculations using semi- 

empirical equations show that the off-diagonal elements of the latter matrix are negligibly small while the diagonal 
1 elements are of the order of 10-. We obtain 

~.=!0 5 S. IIAII .M2~*M~, F0=IIA-III .M2-M).-I (3.5) 

The vector vt is estimated in the same way as the quantity/}nn,. As a result, we obtain 

F I ~l lv I II~.M ~ 10 3 S ( 3 . 6 )  

We shall study the quantities v a. At a fixed pressure, the function K can vary strongly when the vector ~r)c a is 
collinear with (Ca - ca). However, the relative change is very small. Calculations show that Ilvll.. u =~ 10 -s. It is 
important that the estimate is independent of M. 

When account is taken of (3.5), we now obtain II h I1-, u ~ 10-3 ML. On combining this result with (3.4)-(3.6), 
we find that the approximate function 

D I (to) = 0111tol2 II + i¢t~t 2 I-1 (1 + 01311ol) -I 

011 = 107 m s 2, 0[ 2 = 2 X 10 7 S, 0[3 = M'-I 105 S 

can be used instead of the exact function D(to). 
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The stability condition is obviously satisfied when M ~< 10. It may be pointed out that the behaviour of the function 
Dl(t0) deteriorates as M increases. This does not mean that an increase in the number of components in the mixture 
destroys stability. It simply means that when a large number of components are taken into account it is necessary 
to use finer integral estimates which would be "sensitive" to the extent of the effect of a component on the two- 
phase equilibrium. The stability test which has been obtained above is well adapted to a system in which.all the 
components have an approximately equal effect on the two-phase state. 
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